Differential cocycles and Dixmier–Douady bundles
نویسندگان
چکیده
منابع مشابه
Differential Calculi over Quantum Groups and Twisted Cyclic Cocycles
We study some aspects of the theory of non-commutative differential calculi over complex algebras, especially over the Hopf algebras associated to compact quantum groups in the sense of S.L. Woronowicz. Our principal emphasis is on the theory of twisted graded traces and their associated twisted cyclic cocycles. One of our principal results is a new method of constructing differential calculi, ...
متن کاملThe Differential Azumaya Algebras and Non-commutative Picard–Vessiot Cocycles
A differential Azumaya algebra, and in particular a differential matrix algebra, over a differential field K with constants C is trivialized by a Picard–Vessiot (differential Galois) extension E. This yields a bijection between isomorphism classes of differential algebras and Picard–Vessiot cocycles Z(G(E/K), PGLn(C)) which cobound in Z (G(E/K), PGLn(E)).
متن کاملDifferential calculi on noncommutative bundles
We introduce a category of noncommutative bundles. To establish geometry in this category we construct suitable noncommutative differential calculi on these bundles and study their basic properties. Furthermore we define the notion of a connection with respect to a differential calculus and consider questions of existence and uniqueness. At the end these constructions are applied to basic examp...
متن کاملFast Iteration of Cocycles over Rotations and Computation of Hyperbolic Bundles
We present numerical algorithms that use small requirements of storage and operations to compute the iteration of cocycles over a rotation. We also show that these algorithms can be used to compute efficiently the stable and unstable bundles and the Lyapunov exponents of the cocycle.
متن کامل2-cocycles on the Lie Algebras of Generalized Differential Operators
In a recent paper by Zhao and the author, the Lie algebras A[D] = A⊗ IF [D] of Weyl type were defined and studied, where A is a commutative associative algebra with an identity element over a field IF of any characteristic, and IF [D] is the polynomial algebra of a commutative derivation subalgebra D of A. In the present paper, the 2-cocycles of a class of the above Lie algebras A[D] (which are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2018
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2018.01.028